

QuantumScale Single Cell RNA – Medium

Protocol

For Research Use Only

Document 1323029 Rev A

Legal Notices Document 1323029 Rev A, May 2025 © 2025 Scale Biosciences, Inc.

Scale Biosciences 5601 Oberlin Dr., Suite 110 San Diego, CA 92121, United States www.scale.bio support@scale.bio

Scale Biosciences, Inc ("ScaleBio"). All rights reserved. No part of this document may be reproduced, distributed, or transmitted in any form or by any means, electronic or mechanical, including photocopying, recording, or any information storage and retrieval system, without the prior written permission of ScaleBio. This document is provided for information purposes only and is subject to change or withdrawal by ScaleBio at any time.

Disclaimer of Warranty

TO THE EXTENT PERMITTED BY APPLICABLE LAW, SCALEBIO PROVIDES THIS DOCUMENT "AS IS" WITHOUT WARRANTY OF ANY KIND, INCLUDING WITHOUT LIMITATION, ANY IMPLIED WARRANTIES OF MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE, OR NONINFRINGEMENT. IN NO EVENT WILL SCALEBIO BE LIABLE TO YOU OR ANY THIRD PARTY FOR ANY LOSS OR DAMAGE, DIRECT OR INDIRECT, FROM THE USE OF THIS DOCUMENT, INCLUDING WITHOUT LIMITATION, LOST PROFITS, LOST INVESTMENT, BUSINESS INTERRUPTION, GOODWILL, OR LOST DATA, EVEN IF SCALEBIO IS EXPRESSLY ADVISED IN ADVANCE OF THE POSSIBILITY OF SUCH LOSS OR DAMAGE. Any warranties applicable to the ScaleBio products are set forth in the Terms and Conditions accompanying such product and such Terms and Conditions are not modified in any way by the terms of this notice.

Trademark Information

ScaleBio may make reference to products or services provided by other companies using their brand names or company names solely for the purpose of clarity, and does not assert any ownership rights over those third-party marks or names. Images were created with BioRender.com.

Patent Information

ScaleBio products may be covered by one or more patents as indicated at https://scale.bio/legal-notice/.

Terms and Conditions

The use of the ScaleBio products described herein is subject to ScaleBio's Terms and Conditions that accompany the product, or such other terms as have been agreed to in writing between ScaleBio and the user.

Intended Use

All products and services described herein are intended FOR RESEARCH USE ONLY and NOT FOR USE IN DIAGNOSTIC PROCEDURES.

Table of Contents

Required Materials
Best Practices
Workflow Diagram
Assay Introduction
Step 1: Preparing the Quantum Barcoding Plate 12
Step 2: Initial Distribution and Reverse Transcription
Step 3: Cell/Nuclei Loading 17
Step 4: Bead Loading
Step 5: cDNA Release and Capture 19
Step 6: Bead Collection 21
Step 7: Bead Ligation
Step 8: Bead Oligo Blocking 24
Step 9: Second Strand Synthesis 26
Step 10: First PCR Amplification 28
Step 11: Post-PCR SPRI Cleanup and QC 30
Step 12: RNA Index PCR 32
Step 13: Final Library Cleanup 33
Step 14: ScalePlex Enrichment PCR 35
Step 15: ScalePlex Library Cleanup 37
Step 16: Final Library QC 39
Step 17: ScalePlex Library QC 40
Step 18: Sequencing Parameters 41
Document Revision History

Required Materials

Consumables and Reagents Manufactured by ScaleBio

Kits required for this protocol:

- QuantumScale Single Cell RNA Kit Medium (PN 1258683)
 - QuantumScale Single Cell RNA Small/Medium, Module 1 (PN 1255822)
 - QuantumScale Single Cell RNA Medium, Module 2 (PN 1263436)
 - QuantumScale Single Cell RNA Medium, Module 3 (PN 1263437)
 - QuantumScale Single Cell RNA Small/Medium, RT Module (PN 1321199)
- QuantumScale Library Index Kit-I-1 (PN 1258495 for Illumina libraries)

Kit Module	Consumable	Part Number	Qty	Cap Color	Storage Temp
Module 1	Quantum Barcoding Plate	1254544	1	_	RT
Module 1	Plate Wetting Buffer	1254719	1	Clear	RT
Module 3	Plate Blocking Buffer	1254720	1	Clear	-20°C
Module 3	QS RT Barcode Plate 24 (Plate)	1254721	1	_	-20°C
Module 3	RT Enhancer	1314356	1	Blue	-20°C
Module 3	RT Enzyme Mix	1254722	1	Blue	-20°C
Module 3	RT Buffer	1254723	1	Blue	-20°C
Module 3	RT Additive	1254724	1	Blue	-20°C
Module 2	RT Stop Solution	1254726	1	Blue	4°C
Module 2	Cell Wash Buffer	1254728	1	White	4°C
Module 2	Quantum Barcoding Beads-RNA- 8 (Plate)	1254730	1	—	4°C
Module 3	RC Enzyme	1254732	1	White	-20°C
Module 3	Cleanup Enzyme	1254734	1	White	-20°C
Module 3	RC and Cleanup Buffer	1254733	1	White	-20°C
Module 2	Bead Collection Buffer	1254739	1	White	4°C
Module 2	Bead Buffer	1254738	1	White	4°C
Module 1	Pre-RC Buffer	1316364	1	White	RT
Module 3	Ligation 1 Enzyme	1254741	1	Green	-20°C
Module 3	Ligation 1 Buffer	1254743	1	Green	-20°C
Module 2	Ligation 1 Wash Reagent	1254746	1	Green	4°C
Module 3	Oligo Blocking Enzyme	1254751	1	Green	-20°C
Module 3	Oligo Blocking Buffer	1254748	1	Green	-20°C

Kit Module	Consumable	Part Number	Qty	Cap Color	Storage Temp
Module 3	Oligo Blocking Additive	1279264	1	Green	-20°C
Module 3	Oligo Blocking Enhancer	1279265	1	Green	-20°C
Module 3	Second Strand Enzyme	1314369	1	Violet	-20°C
Module 3	Second Strand Buffer	1314371	1	Violet	-20°C
Module 3	Second Strand Additive	1314370	1	Violet	-20°C
Module 3	Second Strand Primer	1314372	1	Violet	-20°C
Module 3	QB Bead - RNA PCR MM	1314362	1	Yellow	-20°C
Module 3	QB Bead - RNA PCR Enhancer	1317035	1	Yellow	-20°C
Module 3	QB Bead - RNA PCR Primer	1317037	1	Yellow	-20°C
Module 2	SPRI Additive	1254779	1	Yellow	4°C
Module 1	Elution Buffer	1254781	1	Yellow	RT
Module 3	QS Index PCR MM	1254778	1	Pink	-20°C
QuantumScale Library Index Kit	QS RNA Index PCR Primer Tube	1255817	1	Pink	-20°C
QuantumScale Library Index Kit	QS ScalePlex Index Primer Tube	1255789	1	Blue	-20°C

Consumables and Reagents Manufactured by Other Vendors

Consumable or Reagent	Supplier	Part Number
Nuclease-free water	Various	Various
Ethanol (pure)	Various	Various
SPRIselect	Beckman Coulter	B23317
Cell counting dye	Various	Various
Pipette tips (nuclease-free, filtered, low retention for P1000, P200, P20, P10)	Various	Various
0.2-mL PCR tube strips (nuclease-free)	Various	Various
1.5-mL DNA LoBind tubes	Eppendorf	022431021
2.0-mL DNA LoBind tubes	Eppendorf	022431048
Microseal 'B' PCR Plate Sealing Film	Bio-Rad	MSB1001
Qubit dsDNA HS Assay Kit	Thermo Fisher	Q33231
HS D5000 ScreenTape (or equivalent kit for alternative fragment analyzer) ^a	Agilent	5067-5592
NEBNext Library Quant Kit for Illumina ^a	NEB	E7630

a. Required for quality control of library.

Recommended Equipment

Item	Supplier	Part Number
Pipettes (P1000, P200, P20, P10, P2)	Various	Various
Multi-channel pipettes (P200, P20, P10)	Various	Various
Magnetic stand for 15-mL tubes	Permagen	MSR50151 or MSR2X15 (or similar)
Magnetic stand for 1.5-mL tubes	Thermo Fisher	12321D
Magnetic stand for 0.2-mL strip tubes	Various	Various
96-well aluminum cooler blocks	Various	Various
Vortex mixer	Various	Various
Microcentrifuge (1.5-mL tubes, 0.2-mL strip tubes)	Various	Various
Cell counter	Various	Various
Centrifuge with temperature control and swing-bucket rotor (1.5-mL tubes, 96-well plates)	Various	Various
Thermocycler with lid temperature control (0–105°C) for semi- skirted 96-well plates	Various	Various
Rotator/Orbital mixer	Various	Various
Shaker for semi-skirted 96-well plates (ThermoMixer)	Various	Various
Incubator (37°C)	Various	Various
Qubit 4 Fluorometer	Thermo Fisher	Q33238
4200 Tapestation Instrument (or equivalent system) ^a	Agilent	G2991BA

a. Required for quality control of library.

Best Practices

Assay Specific Methods of Pipetting

CAUTION: When adding liquid to the Quantum Barcoding Plate, ensure liquid is added to the side wall of a well, except when noted otherwise. When removing liquid from a well, always pipette from a selected corner of the well as shown in Figure 1. Ensure the same corner is used every time to avoid damaging the microwells.

Figure 1: The described method of pipetting in and out of a Quantum Barcoding Plate. The picture on the left shows the front view, and the picture on the right shows the side view of pipetting.

Figure 2: Pipetting into a well along the side wall.

Figure 3: Pipetting out of a well from a selected corner (same corner every time)

CAUTION: When loading cells/nuclei and Quantum Barcoding Beads into the Quantum Barcoding Plate ensure that you are pipetting slowly over the center of each well to allow for even distribution across the entire well, as shown in Figure 4.

Figure 4: The described method of loading cells/nuclei and Quantum Barcoding Beads into the Quantum Barcoding Plate.

General Laboratory Best Practices

- Calibrate and service pipettes every 12 months to ensure accurate sample volume transfer at each step.
- Store all reagents at the storage conditions recommended by the supplier.
- Unless otherwise specified, thaw reagents on ice.
- Never reuse pipette tips or tubes.
- Keep pipette tip boxes, reagent containers, and sample tubes closed when not in use.
- Wear suitable protective clothing, eyewear, and gloves.

Prevention of Amplicon Cross-contamination in Sequencing Libraries

- Thaw and prepare reagent mixes in pre-amplification workspaces.
- Perform amplification in post-amplification workspaces.
- Perform PCR purification steps in post-amplification workspace.
- Never bring material or equipment from post-amplification workspaces into pre-amplification workspaces.
- Regularly clean post-amplification workspaces with a 10% bleach solution.

Workflow Diagram

Assay Introduction

Fixed cells are used in the in situ Reverse Transcription (RT) with poly-dT and Multi-Specific Primers (MSP) carrying a partial TruSeq Read 2 adaptor sequence, the RT Barcode and the Molecular Barcode (MB). RT reactions with distinct RT barcodes are performed, then the cells/nuclei are pooled and loaded into the Quantum Barcoding Plate, followed by bead loading. The cDNA molecules are then released from the cells/ nuclei and captured on beads carrying barcoded oligos. A ligation reaction is carried out to link the cDNA with the bead oligos. The beads are then washed to generate single stranded cDNA linked with the bead oligo, and then the bead oligo is blocked. Second strand synthesis is performed with a random primer carrying the partial SBS (Scale Bead Sequence) sequence which is used as PCR handle for amplification.

Next cDNA together with the linked bead oligo is amplified by a semi-suppressive PCR reaction. Final RNA library PCR is performed to add the Illumina P5 and P7 adaptors and i5 index. If using ScalePlex, ScalePlex libraries are enriched with a separate PCR reaction.

SBS – Scale Bead Sequence P5/P7 – Illumina Adapters P5/P7 After SPRI purification of each library, the libraries are ready for sequencing. Note that this is the final library structure for Illumina libraries.

ScalePlex Library – ILMN

Step 1: Preparing the Quantum Barcoding Plate

Source	Material	Cap Color	Take From	Thaw At	Brief Vortex	Brief Spin
Module 1	Quantum Barcoding Plate	—	RT	RT	\bigotimes	\bigotimes
Module 1	Plate Wetting Buffer	Clear	RT	RT	\bigotimes	\bigotimes
Module 3	Plate Blocking Buffer	_	-20°C	RT	\bigotimes	\bigotimes
Other Vendors	Microseal 'B' PCR Plate	Sealing Film				

Review the following table to prepare reagents before starting this step.

Before you Begin

- Set a swing bucket centrifuge for 96-well plates to room temperature.
- Use only the first column (A1-H1) of the Quantum Barcoding Plate.

Procedure

- 1. Unpack the Quantum Barcoding Plate. Set the plastic lid aside on a clean surface; the lid will be used throughout the protocol.
- 2. Add **100 µL** of Plate Wetting Buffer to the first column (A1-H1) of the Quantum Barcoding Plate by dispensing the liquid on the side walls, as shown.

- 3. Seal the plate with an adhesive seal and place the plate lid on the plate.
- 4. Centrifuge the plate at **300 x g** for **5 minutes** at **room temperature**.

5. Incubate the Quantum Barcoding Plate on the bench according to Program 1.

Program 1: Plate Preparation

Temperature	Time
Room temperature (18–25°C)	>12 h

CAUTION: Ensure that you wait at least 12 hours for plate preparation. Do not proceed immediately.

NOTE: For longer storage time (up to 2 months), place the Quantum Barcoding Plate with Plate Wetting Buffer in the wells at 4°C after the 12-hour room temperature incubation.

- 6. Centrifuge the plate at **300 x g** for **30 seconds** at **room temperature**.
- 7. Remove the plate lid, unseal the Quantum Barcoding Plate and discard the seal.
- 8. Invert the Plate Wetting Buffer over a sink and shake the plate to discard the Plate Wetting Buffer. Blot the residue liquid on a paper towel.

Inspect that the majority of liquid is removed and plate is free of debris.

9. Invert to mix the Plate Blocking Buffer tube and add **150 µL** Plate Blocking Buffer into each well of the Quantum Barcoding Plate along the side wall (first column only), as shown.

- 10. Place the lid back on the Quantum Barcoding Plate.
- 11. Incubate the Quantum Barcoding Plate on the bench according to Program 2.

Program 2: Plate Blocking

Temperature	Time
Room temperature (18–25°C)	30 min

12. Store the Quantum Barcoding Plate with Plate Blocking Buffer in the wells for a maximum of **72 hours** at **4°C**, or proceed Step 2: Initial Distribution and Reverse Transcription.

Step 2: Initial Distribution and Reverse Transcription

NOTE: Before starting this step make sure cells/nuclei are fixed with the ScaleBio Sample Fixation Kit (PN 2020001) or the ScalePlex Fixation Kit v2 (PN 1269724).

Source	Material	Cap Color	Take From	Thaw At	Brief Vortex	Brief Spin
Module 3	QS RT Barcode Plate 24	_	-20°C	On ice	\otimes	\checkmark
Module 3	RT Enhancer	Blue	-20°C	On ice	\bigotimes	\checkmark
Module 3	RT Enzyme Mix	Blue	-20°C	On ice	\bigotimes	\checkmark
Module 3	RT Buffer	Blue	-20°C	On ice	\checkmark	\checkmark
Module 3	RT Additive	Blue	-20°C	On ice	\checkmark	\checkmark
Module 2	RT Stop Solution	Blue	4°C	On ice	\bigotimes	\bigotimes
Module 2	Cell Wash Buffer	White	4°C	On ice	\bigotimes	\bigotimes
	Nuclease-free water					
	Microseal 'B' PCR Plate S	ealing Film				
Other Vendors	P200 wide-bore pipette t	ips				
	Cell counting dye					
	2-mL DNA LoBind tubes					

Review the following table to prepare reagents before starting this step.

Before you Begin

- If frozen, thaw cells/nuclei on ice. Do not vortex.
- Fully chill a 96-well metal block on ice.
- Set a swing bucket centrifuge for 96-well plates to 4°C.
- Start Program 3 on a thermocycler and hold at 55°C with a lid temperature of 65°C.

Procedure

- 1. Centrifuge the thawed QS RT Barcode Plate 24 at **500 x g** for **1 minute** at **4°C** and place on a 96-well metal block on ice.
- 2. Determine the concentration of the cell/nuclei suspension prepared with the Sample Fixation Kit or ScalePlex Fixation Kit using cell counting equipment. Keep the cell/nuclei suspension **on ice**.
- 3. Unseal the QS RT Barcode Plate 24 on ice. A total of 24 RT reactions are performed.
- 4. Dilute RT Enhancer by mixing 14 µL RT Enhancer with 42 µL Cell Wash Buffer.
- 5. Add 2 µL of diluted RT Enhancer into each barcode well of the QS RT Barcode Plate (first 3 columns).
- 6. On ice, use P200 wide-bore pipette tips to gently mix the cells/nuclei, and dilute with Cell Wash Buffer to achieve a concentration of 2800 cells/µL. Make sure the cells/nuclei are mixed well before loading.

7. Immediately distribute 5µL of cells/nuclei to each well of the first three columns (column 1, 2, 3) of the QS RT Barcode Plate 24 that contains RT Barcode Primer.

CAUTION: DO NOT pipette mix. Change pipette tips between wells to avoid crosscontamination.

NOTE: Write down the well position of individual samples for downstream data analysis. This is the first level RT Barcode.

- 8. Seal the QS RT Barcode Plate 24 and place it on a plate shaker.
- 9. Shake the plate at **2000 rpm** for **30 seconds**.
- 10. Centrifuge the plate at **100 x g** for **30 seconds** at **4°C**.
- 11. Incubate the QS RT Barcode Plate 24 in a pre-heated thermocycler according to Program 3.

Program 3: RNA Denaturation

Lid Temperature	Reaction Volume
65°C	11 µL
Temperature	Time
55°C	×
Skip the HOLD step after thermoo	placing the plate in the cycler.
55°C	3 min

- 12. Upon completion, **immediately** remove the QS RT Barcode Plate 24 from the thermocycler and place on the pre-chilled metal block **on ice**.
- 13. Incubate on ice for 2 minutes.
- 14. Start Program 4 on a thermocycler and hold at 4°C with a lid temperature of 65°C.
- 15. On ice, prepare the Reverse Transcription Master Mix.

Table 1: Reverse Transcription Master Mix

Reagent	Volume (µL)
Nuclease-free water	70
RT Buffer Conc.	112
RT Additive	28
RT Enhancer	14
RT Enzyme Mix	28
Total volume	252

- 16. On ice, slowly pipette mix the RT Master Mix until the solution is homogeneous and briefly spin down.
- 17. Aliquot **82 µL** of the RT Master Mix into three tubes of an 8-tube strip **on ice**.

18. **On ice**, unseal the QS RT Barcode Plate 24 and distribute **9 μL** of the RT Master Mix into each well of column 1, 2, and 3 of the plate, dispensing the RT Master Mix to the bottom of the wells.

CAUTION: DO NOT pipette mix. Change pipette tips between wells to avoid crosscontamination.

- 19. Seal the QS RT Barcode Plate 24 with an adhesive seal and place it on a plate shaker.
- 20. Shake the plate at **2000 rpm** for **30 seconds**.
- 21. Centrifuge the plate at 100 x g for 30 seconds at 4°C and place on ice.
- 22. Incubate the QS RT Barcode Plate 24 in a pre-cooled thermocycler according to Program 4.

Program 4: Gradient Reverse Transcription

Lid Temperature	Reaction Volume
65°C	20 µL
Temperature	Time
4°C	∞
Skip the HOLD step afte therma	r placing the plate in the pocycler.
4°C	2 min
10°C	2 min
20°C	2 min
30°C	2 min
40°C	2 min
50°C	2 min
55°C	10 min
4°C	~

- 23. Once the thermocycler program is completed, take out the QS RT Barcode Plate 24 and shake the plate at 2000 rpm for 30 seconds. Unseal the QS RT Barcode Plate 24, place on ice, then add 100 μL of cold RT Stop Solution into each well of the first column of QS RT Barcode Plate 24.
- 24. Use an 8-channel pipette to pool the RT reaction from columns 2 and 3 to column 1. To increase the cell/ nuclei recovery, pipette mix before taking out the RT reaction.
- 25. Pool the RT reaction with RT Stop buffer from the first column into a new 1.5-mL DNA LoBind tube on ice.
- 26. Spin the RT cells/nuclei in the 1.5-mL tube at 500 x g for 8 minutes.
- 27. Remove the tube from the centrifuge and remove the supernatant, leaving 50 μ L.

Best practice is to fill another 1.5-mL tube with 50 μ L and use that tube as a reference point.

- 28. Add **1200 \muL** of Cell Wash Buffer to resuspend cells/nuclei for a total volume of 1250 μ L.
- 29. (Optional) Take 10 µL for cell counting. Keep the rest of the cell/nuclei suspension on ice for cell loading.
- 30. Proceed directly to Step 3: Cell/Nuclei Loading.

Step 3: Cell/Nuclei Loading

Source	Material	Cap Color	Take From	Thaw At	Brief Vortex	Brief Spin
Module 2	Cell Wash Buffer	White	4°C	On ice	\bigotimes	\bigotimes
Other Vendors	Microseal 'B' PCR Plate	Sealing Film				

Review the following table to prepare reagents before starting this step.

Before you Begin

• Set a swing bucket centrifuge for 96-well plates to 4°C.

Procedure

- 1. Invert the Quantum Barcoding Plate with Plate Blocking Buffer over a sink and shake the plate to discard the Plate Blocking Buffer. Blot the residual liquid on a paper towel. Inspect that the majority of the liquid is removed and the plate is free of debris. Note that only the first column (8 wells) is used.
- 2. Add **150 µL** of cell/nuclei solution with a 200-µL pipette tip to the center of each well of the first column of the Quantum Barcoding Plate without touching the bottom of the plate, as shown. If there is residual cell/nuclei solution in the tube, distribute it evenly into 8 wells.

- 3. Place the plate lid on the Quantum Barcoding Plate and incubate for **5 minutes** on a flat surface.
- 4. Centrifuge the Quantum Barcoding Plate at **500 x g** for **3 minutes** at **4°C**.
- 5. Gently remove and discard all supernatant from the wells by pipetting from a selected corner of the well, as shown.

6. Proceed directly to Step 4: Bead Loading.

Step 4: Bead Loading

Source	Material	Cap Color	Take From	Thaw At	Brief Vortex	Brief Spin
Module 2	Quantum Barcoding Beads-RNA-8 (Plate)	—	4°C	On ice	\bigotimes	\checkmark
Module 2	Cell Wash Buffer	White	4°C	On ice	\bigotimes	\bigotimes
Other Vendors	Microseal 'B' PCR Plate Sealing Film					

Review the following table to prepare reagents before starting this step.

Before you Begin

• Note that only the first column (8 wells) contains Quantum Barcoding Beads-RNA-8 solution.

Procedure

CAUTION: Quantum Barcoding Beads are at the bottom of the wells. Pipette mix the beads solution well before pipetting beads out.

- 1. Invert the Quantum Barcoding Beads Plate 2–3 times to wash off beads stuck to the foil. Centrifuge the Quantum Barcoding Beads Plate at **300 x g** for **30 seconds** at **4°C**. Remove the sealing foil and inspect to ensure no beads are stuck to the foil.
- Pipette the whole volume (~100 μL) of Quantum Barcoding Beads with a multi-channel pipette up and down to mix. Take **100 μL** of the beads and pipette to the center of each well of the Quantum Barcoding Plate without touching the bottom of the plate, as shown. Do not pipette vigorously to avoid bubbles.

3. Place the plate lid on the Quantum Barcoding Plate and incubate for **5 minutes** on a flat surface at **room temperature**. After **3 minutes**, gently shake and swirl the plate horizontally to uniformly distribute the beads. Continue to incubate for **2 minutes** after shaking.

IMPORTANT: The 5-minute incubation is critical to ensure efficient beads loading. Gently shaking the plate after a 3-minute incubation ensures uniform distribution of the beads.

- 4. Centrifuge the plate at **500 x g** for **3 minutes** at **4°C**.
- 5. Set the pipette at 160 µL and gently remove and discard all supernatant from the wells by pipetting from a selected corner (same corner) of the wells, as shown in Figure 3.
- 6. Proceed directly to Step 5: cDNA Release and Capture.

Step 5: cDNA Release and Capture

Source	Material	Cap Color	Take From	Thaw At	Brief Vortex	Brief Spin
Module 3	RC Enzyme	White	-20°C	On ice	\bigotimes	\checkmark
Module 3	Cleanup Enzyme	White	-20°C	On ice	\bigotimes	\checkmark
Module 3	RC and Cleanup Buffer	White	-20°C	On ice	\bigotimes	\checkmark
Module 3	Pre-RC Buffer	White	RT	RT	\bigotimes	\bigotimes

Review the following table to prepare reagents before starting this step.

Before you Begin

• Pre-heat an incubator that will fit the Quantum Barcoding Plate to 37°C.

Procedure

1. Remove the lid from the Quantum Barcoding Plate and add **100 µL** of Pre-RC buffer to each well.

- 2. Incubate at **37°C** for **10 minutes**.
- 3. Remove the Pre-RC Buffer.
- 4. Gently add 150 µL of Cell Wash Buffer by dispensing the liquid on the side walls of the wells, as shown.

5. Pipette mix two times from a selected corner of the well and remove and discard all solution.

6. Prepare the RC Solution in a 1.5-mL DNA LoBind tube at **room temperature** according to Table 2. Pipette mix RC Solution 5 times.

Table 2: RC Solution

Reagent	Volume (µL)
RC and Cleanup Buffer	460
RC Enzyme	40
Total volume	500

7. Dispense **50 µL** of RC Solution to each well loaded with cells/nuclei and beads, as shown.

8. Place a plastic lid on the Quantum Barcoding Plate and place the plate in an incubator according to Program 5.

Program 5: RC Incubation

Temperature	Time
37°C	30 min

9. About **5 minutes** before the RC Incubation ends, prepare the RC Cleanup Solution according to Table 3. Pipette mix RC Cleanup Solution 5 times.

Table 3: RC Cleanup Solution

Reagent	Volume (µL)
RC and Cleanup Buffer	225
Cleanup Enzyme	25
Total volume	250

- 10. Remove the Quantum Barcoding Plate from the incubator, remove the lid.
- Add 25 μL of RC Cleanup Solution to the side of each well and mix by moving the plate in a circular motion 5 times on a flat surface.
- 12. Place a plastic lid on the Quantum Barcoding Plate and incubate at room temperature for 10 minutes.
- 13. Proceed directly to Step 6: Bead Collection.

Step 6: Bead Collection

Source	Material	Cap Color	Take From	Thaw At	Brief Vortex	Brief Spin
Module 2	Bead Collection Buffer	Clear	4°C	On ice	\bigotimes	\bigotimes
Module 2	Bead Buffer	White	4°C	On ice	\bigotimes	\bigotimes
Other Vendors	Magnetic stand (15-mL compatible)					
	Magnetic stand (1.5-mL compatible)					

Review the following table to prepare reagents before starting this step.

Before you Begin

• Set a swing bucket centrifuge for 96-well plates to room temperature.

Procedure

- 1. Remove the lid from the Quantum Barcoding Plate and add **200 µL** of Bead Collection Buffer to each well. Note that only the first column is used.
- 2. Centrifuge at **500 x g** for **3 minutes** at **room temperature** to dislodge the beads. The collection buffer will force the beads out of the microwells during this step.
- Use a 200-μL pipette and set to 150 μL to pipette mix the bead solution. Take out the beads and pool in a 5-mL tube. You need to pipette twice to take out all bead solution.
- 4. Add **100 μL** of Bead Buffer to each well (first column) of the Quantum Barcoding Plate and pipette mix two to three times to dislodge the residue beads.
- 5. Take out the Bead Buffer with beads and add to the 5-mL tube.
- 6. Place the tube on a magnetic stand.
- 7. Once the solution is clear, carefully remove and discard the supernatant without touching the beads.

NOTE: Waiting for the supernatant to become clear takes 3–5 minutes. Ensure that the solution is clear after waiting 3–5 minutes.

- 8. Remove the tube from the magnetic stand and resuspend the Quantum Barcoding Beads with **1 mL** of Bead Buffer.
- 9. Transfer to a 1.5-mL tube, briefly centrifuge in a microcentrifuge, and place on the magnetic stand.
- 10. Once the solution is clear, carefully remove and discard the supernatant without pipetting the beads.
- 11. Wash the beads two more times with **200 µL** of Bead Buffer for a total of **three washes**. Remove the tube from the magnetic stand and resuspend the beads during each wash.
- 12. Proceed directly to Step 7: Bead Ligation.

Step 7: Bead Ligation

Source	Material	Cap Color	Take From	Thaw At	Brief Vortex	Brief Spin
Module 3	Ligation 1 Enzyme	Green	-20°C	On ice	\bigotimes	\checkmark
Module 3	Ligation 1 Buffer	Green	-20°C	On ice	\checkmark	\checkmark
Module 2	Bead Buffer	White	4°C	On ice	\bigotimes	\bigotimes
Module 2	Ligation 1 Wash Reagent	Green	4°C	RT	\bigotimes	\bigotimes
Other Vendors	Magnetic stand (1.5-mL cc	mpatible)				
	Nuclease-free water					

Review the following table to prepare reagents before starting this step.

Procedure

- 1. On the magnetic stand, carefully remove and discard the supernatant without pipetting the beads.
- 2. Prepare the Ligation Master Mix **on ice** according to Table 4.

Table 4: Ligation Master Mix

Reagent	Volume (µL)
Ligation 1 Buffer	23.5
Nuclease-free water	164
Ligation 1 Enzyme	2.5
Total volume	190

- 3. Resuspend the Quantum Barcoding Beads in the Ligation Master Mix (about 190 µL).
- 4. Incubate the reaction mix on a rotator/orbital mixer according to Program 6. A longer incubation of up to 2 hours is acceptable.

Program 6: Ligation Incubation

Temperature	Time
18-25°C	30 min

CAUTION: Set the rotator/orbital mixer speed and rotation so the Quantum Barcoding Beads do not settle. A thermomixer can also be used with settings at 18–25°C and 1500 rpm. If you use a thermomixer, a 2-mL tube with a round bottom is recommended because it facilitates mixing.

- 5. After the incubation is complete, spin the tube briefly.
- 6. Place the tube containing the Ligation Master Mix on a magnetic stand.

- 7. Once the solution is clear, carefully remove and discard the supernatant without disturbing the beads.
- 8. Remove the tube from the magnetic stand.
- 9. Add **200 µL** of Bead Buffer and invert several times to resuspend.
- 10. Briefly spin the tube, and place it on a magnetic stand.
- 11. Once the solution is clear, carefully remove and discard the supernatant without disturbing the beads.
- 12. Remove the tube from the magnetic stand.
- 13. Add 200 µL of Ligation 1 Wash Reagent and invert several times to resuspend.
- 14. Incubate at **room temperature** for **5 minutes** on a rotator/orbital mixer. Make sure the beads do not settle down during the reaction. A thermomixer can also be used with settings at 25°C and 1500 rpm. If you use a thermomixer, a 2-mL tube with a round bottom is recommended because it facilitates mixing.
- 15. Spin the tube, and place it on a magnetic stand.
- 16. Once the solution is clear, carefully remove and discard the supernatant without disturbing the beads.
- 17. Repeat steps 13-16 two times for a total of three Ligation 1 Wash Reagent washes.
- 18. Add 200 µL of Bead Buffer and invert several times to resuspend.

NOTE: Perform the remaining washes with Bead Buffer.

- 19. Spin the tube, and place it on a magnetic stand.
- 20. Once the solution is clear, carefully remove and discard the supernatant without disturbing the beads.
- 21. Remove the tube from the magnetic stand.
- 22. Repeat steps 18–21 **three times** for a total of **four Bead Buffer washes**. Note that the beads can be stored in **200 µL** of Bead Buffer (final wash) at **4°C**.
- 23. Store the Quantum Barcoding Beads, or proceed to Step 8: Bead Oligo Blocking.

Safe stopping point. After ligation, Quantum Barcoding Beads with cDNA can be stored in Bead Buffer at 4°C for up to 72 hours.

Step 8: Bead Oligo Blocking

Source	Material	Cap Color	Take From	Thaw At	Brief Vortex	Brief Spin
Module 3	Oligo Blocking Enzyme	Green	-20°C	On ice	\bigotimes	\checkmark
Module 3	Oligo Blocking Buffer	Green	-20°C	On ice	\checkmark	\checkmark
Module 3	Oligo Blocking Additive	Green	-20°C	On ice	\checkmark	\checkmark
Module 3	Oligo Blocking Enhancer	Green	-20°C	On ice	\checkmark	\checkmark
Module 2	Bead Buffer	White	4°C	On ice	\bigotimes	\bigotimes
Other Vendors	Magnetic stand (1.5-mL compatible)					

Review the following table to prepare reagents before starting this step.

Before You Begin

• Preheat the rotator/orbital mixer to 37°C.

Procedure

1. Prepare the Bead Oligo Blocking Master Mix according to Table 5.

Table 5: Bead Oligo Blocking Master Mix

Reagent	Volume (µL)
Nuclease-free water	138
Oligo Blocking Buffer	20
Oligo Blocking Enhancer	20
Oligo Blocking Additive	8
Oligo Blocking Enzyme	4
Total volume	190

- 2. Place the beads on a magnetic stand and let them separate.
- 3. Once separated, remove and discard the Bead Buffer on the magnetic stand.
- 4. Resuspend the Quantum Barcoding Beads in the Bead Oligo Blocking Master Mix (about 190 µL).

5. Incubate the reaction mix on a rotator/orbital mixer according to Program 7.

Program 7: Bead Oligo Blocking Incubation

Temperature	Time
37°C	30 min

CAUTION: Set the rotator/orbital mixer speed and rotation so the Quantum Barcoding Beads do not settle. A thermomixer can also be used with settings at 37°C and 1200 rpm. If you use a thermomixer, a 2-mL tube with a round bottom is recommended because it facilitates mixing.

- 6. After the incubation is complete, place the tube containing Bead Oligo Blocking reaction mix on a magnetic stand.
- 7. Once the solution is clear, carefully remove and discard the supernatant without disturbing the beads.
- 8. Remove the tube from the magnetic stand.
- 9. Add **200 µL** of Bead Buffer and invert several times to resuspend.
- 10. Spin the tube and place it on the magnetic stand.
- 11. Once the solution is clear, carefully remove and discard the supernatant without disturbing the beads.
- 12. Remove the tube from the magnetic stand.
- 13. Repeat steps 8–11 **one more time** for a total of **two Bead Buffer washes**. Remove the tube from the magnetic stand and resuspend the beads during each wash.
- 14. Resuspend the beads in 200 µL of Bead Buffer.
- 15. Proceed to Step 9: Second Strand Synthesis.

Safe stopping point. After Bead Oligo Blocking, Quantum Barcoding Beads with cDNA can be stored in Bead Buffer at 4°C for up to 72 hours.

Step 9: Second Strand Synthesis

Source	Material	Cap Color	Take From	Thaw At	Brief Vortex	Brief Spin
Module 3	Second Strand Enzyme	Violet	-20°C	On ice	\bigotimes	\checkmark
Module 3	Second Strand Buffer	Violet	-20°C	On ice	\checkmark	\checkmark
Module 3	Second Strand Additive	Violet	-20°C	On ice	\bigotimes	\checkmark
Module 3	Second Strand Primer	Violet	-20°C	On ice	\checkmark	\checkmark
Other Venders	Nuclease-free water					
Officer veridors	Magnetic stand (1.5-mL comp	atible)				

Review the following table to prepare reagents before starting this step.

Before you Begin

- Pre-heat the rotator/orbital mixer to 37°C.
- Pre-heat the thermocycler to 95°C.

Procedure

1. Prepare the Second Strand Synthesis Master Mix according to Table 6.

Table 6: Second Strand Synthesis Master Mix

Reagent	Volume (µL)
Nuclease-free water	184
Second Strand Buffer	24
Second Strand Primer	8
Second Strand Additive	8
Total volume	224

- 2. Place the beads on a magnetic stand and let them separate.
- 3. Once separated, remove the buffer from the beads on the magnetic stand.
- 4. Resuspend the beads in 224 µL of Second Strand Synthesis Master Mix.
- Aliquot 28 µL of Second Strand Synthesis Master Mix with beads into each tube of PCR strips (total of eight tubes).
- 6. Incubate the tubes in the thermocycler at 95°C for 3 minutes.
- 7. Immediately place the reaction on ice for **3 minutes**.
- 8. Add **2 µL** of Second Strand Enzyme into each reaction.
- 9. Shake the strip tubes at **2000 rpm** for **30 seconds**.

10. Incubate the tubes on a rotator/orbital mixer according to Program 8.

Alternatively, you can use a thermomixer at 1500 rpm according to Program 8.

Program 8: Second Strand Synthesis

Temperature	Reaction Volume
37°C	30 min

- 11. Inactivate the reaction in a thermocycler mixer at 95°C for 3 minutes.
- 12. Incubate the tubes **on ice** for **5 minutes**.
- 13. Proceed directly to Step 10: First PCR Amplification.

Step 10: First PCR Amplification

Review the following table to prepare reagents before starting this step.

Source	Material	Cap Color	Take From	Thaw At	Brief Vortex	Brief Spin
Module 3	QB Bead - RNA PCR MM	Yellow	-20°C	On ice	\bigotimes	\checkmark
Module 3	QB Bead - RNA PCR Primer	Yellow	-20°C	On ice	\checkmark	\checkmark
Module 3	QB Bead - RNA PCR Enhancer	Yellow	-20°C	On ice	\bigotimes	\checkmark
Other Vanders	Microseal 'B' PCR Plate Sealine	g Film				
Officer vertuors	Magnetic stand (96-well compatible)					

Procedure

1. Prepare First PCR Amplification Master Mix according to Table 7

Table 7: First PCR Amplification Master Mix

Reagent	Volume (µL)
QB Bead Primers	16
QB Enhancer	185
QB Master Mix	440
Total volume	641

2. Add **70 µL** of First PCR Amplification Master Mix into each Second Strand Synthesis reaction.

3. Place the strip tube in the thermocycler and run Program 9.

Program	9:	First	PCR	Amplification
---------	----	-------	-----	---------------

Lid Te	mperature	React	ion Volume	
1	05°C	100 µL		
Step	Temperature	Time	Cycles	
1	98°C	2 min	1	
2	98°C	10 sec	Stage 1	
3	55°C	20 sec	5 cycles	
4	68°C	40 sec	(steps 2-4)	
5	98°C	10 sec	Stage 2	
6	60°C	10 sec	4-7 cycles	
7	68°C	40 sec	(steps 5-7)	
8	68°C	1 min	1	
9	10°C	∞	1	

NOTE: The number of cycles for this PCR stage is determined based on the RNA content. See the following table for recommendations for selected samples.

Cell Types	Stage 2 Cycle Numbers
Large cells (high RNA content)	4
Brain nuclei	5
Small cells and other nuclei (low RNA content)	7
If uncertain about your RNA content of your sample	6

- 4. After PCR is complete, take out the PCR tubes and place them on a magnetic stand.
- 5. Remove **25 μL** of First PCR Amplification product from each PCR reaction and pool into one new tube (total 200 μL).
- 6. Proceed to Step 11: Post-PCR SPRI Cleanup and QC.

Safe stopping point. First PCR Amplification Product can be stored at 4°C for up to 72 hours.

Step 11: Post-PCR SPRI Cleanup and QC

Source	Material	Cap Color	Take From	Thaw At	Brief Vortex	Brief Spin	
Module 2	SPRI Additive	Yellow	4°C	RT	\bigotimes	\checkmark	
Module 1	Elution Buffer	Yellow	RT	RT	\checkmark	\checkmark	
	Nuclease-free water						
	SPRIselect beads						
	Ethanol (pure)						
Other Vendors	0.2-mL PCR tube strips (nuclease-free)						
Officer vertuors	2.0-mL DNA LoBind tubes						
	Magnetic stand (0.2-mL strip tube compatible)						
	Qubit dsDNA HS Assay Kit						
D5000 ScreenTape Kit (or equivalent)							

Review the following table to prepare reagents before starting this step.

Before you Begin

• Prepare 500 µL of fresh 80% ethanol.

Procedure

- 1. To the 200 μL of pooled First PCR Amplification product, add **8 μL** of SPRI Additive for SPRI cleanup for a final volume of 208 μL.
- 2. Vortex the SPRIselect beads until they appear homogeneous in color.
- 3. Add 166 µL of SPRI beads (0.8X) and pipette mix until the solution is homogeneous.
- 4. Incubate at room temperature for 5 minutes.
- 5. Briefly spin and place on a magnetic stand for **2 minutes**.
- 6. Carefully remove and discard the superantant without disturbing the beads.
- 7. Add **200 \muL** of 80% ethanol to the side of the tube opposite the pellet.
- 8. Incubate for **30 seconds**.
- 9. Carefully remove and discard the supernatant without disturbing the beads.
- 10. Repeat the **200 \muL** of 80% ethanol wash for a total of two washes.
- 11. Briefly spin the tube to collect the residual ethanol at the bottom of the tube and place it back on the magnetic stand.
- 12. Carefully remove any residual 80% ethanol without disturbing the beads.
- 13. Air dry the beads for 1 minute or until the bead pellet appears matte instead of glossy, but not cracked.
- 14. Remove the tube from the magnetic stand and add **43 µL** of Elution Buffer.

- 15. Pipette mix to resuspend the beads in solution.
- 16. Incubate at room temperature for 2 minutes.
- 17. Place the tube back on the magnetic stand and wait until the solution is clear.
- 18. Transfer supernatant into a fresh PCR tube.
- 19. (Optional) Determine the size of the First PCR Amplification product using an Agilent Tapestation or equivalent fragment analyzer. Example traces are shown in Figure 5.
- 20. Quantify the SPRIselect bead purified product with the Qubit dsDNA HS Assay Kit.
- 21. Dilute an aliquot of your sample to $1 \text{ ng/}\mu\text{L}$ in at least **40 \mu\text{L}** with nuclease free water.
- 22. Transfer **40 \muL** of the 1-ng/ μ L aliquot (40 ng total) to a fresh PCR tube.
- 23. Store the sample at **4°C** or proceed directly to Step 12: RNA Index PCR. If using ScalePlex fixed samples, the remaining First Amplification Product will be used in Step 14: ScalePlex Enrichment PCR.

Figure 5: Representative First PCR Amplification Product Traces on Tapestation

NOTE: Samples will be low yield at this point in the protocol.

Safe stopping point. Samples can be stored at -20°C for up to 2 months.

Step 12: RNA Index PCR

Review the following table to prepare reagents before starting this step.

Source	Material	Cap Color	Take From	Thaw At	Brief Vortex	Brief Spin
Module 3	QS Index PCR MM	Pink	-20°C	On ice	\bigotimes	\checkmark
QuantumScale Library Index Kit	QS RNA Index PCR Primer Tube	Pink	-20°C	On ice	\checkmark	\checkmark
Other Vendors	Nuclease-free water					

Procedure

1. Prepare RNA Index PCR Reaction Mix according to the Table 8.

Table 8: RNA Index PCR Reaction Mix

Reagent	Volume (µL)
Nuclease-free water	25
Purified First PCR Amplification Product	40
QS Index PCR Primer Tube	10
QS RNA Index PCR MM	25
Total volume	100

NOTE: If using ScalePlex samples, do not throw away the QS Index PCR MM tube, as it will be used in Step 14: ScalePlex Enrichment PCR.

- 2. Pipette mix and briefly spin down in a microcentrifuge.
- 3. Incubate the RNA Index PCR reaction in a thermocycler according to Program 10.

Program 10: RNA Index PCR

Lid Te	mperature	Reactio	n Volume
1	05°C	10	ΟμL
Step	Temperature	Time	Cycles
1	98°C	45 sec	1
2	98°C	15 sec	
3	60°C	30 sec	7 cycles
4	72°C	40 sec	_
5	72°C	1 min	1
6	10°C	∞	1

4. Once the PCR Program 10 is finished, proceed to Step 13: Final Library Cleanup.

Step 13: Final Library Cleanup

NOTE: This is two sequential 0.7X SPRI cleanups.

Review the following table to prepare reagents before starting this step.

Source	Material	Cap Color	Take From	Thaw At	Brief Vortex	Brief Spin
Module 1	Elution Buffer	Yellow	RT	RT	\checkmark	\checkmark
	Nuclease-free water					
	SPRIselect beads					
	Ethanol (pure)					
Other Vandara	0.2-mL PCR tube strips (nuclease-free)					
Officer vehiclors	2.0-mL DNA LoBind tubes Magnetic stand (96-well compatible)					
	Qubit dsDNA HS Assay Kit					
	D5000 ScreenTape Kit (or equivalent)					

Before you Begin

• Prepare 1 mL of fresh 80% ethanol.

Procedure

SPRI Cleanup 1

- 1. Vortex the SPRIselect beads well until they appear homogeneous in color.
- 2. Add **70 μL** of SPRIselect beads (0.7X) to the RNA Index PCR product and pipette mix until the solution is homogeneous.
- 3. Incubate at room temperature for 5 minutes.
- 4. Briefly spin and place the tube on a magnetic stand for 2 minutes or until the solution is clear.
- 5. Remove and discard the supernatant.
- 6. Add $200 \ \mu L$ of 80% ethanol to the side of the tube opposite the pellet.
- 7. Incubate for **30 seconds**.
- 8. Carefully remove and discard the supernatant without disturbing the beads.
- 9. Repeat the 200 µL 80% ethanol wash for a total of two washes.
- 10. Briefly spin the tube to collect the residual ethanol at the bottom of the tube and place it back on the magnetic stand.
- 11. Carefully remove any residual 80% ethanol without disturbing the beads.
- 12. Air dry the beads for 1 minute or until the bead pellet appears matte instead of glossy, but not cracked.

- 13. Remove the tube from the magnetic stand and add **52 µL** of Elution Buffer.
- 14. Pipette mix to resuspend the beads in solution.
- 15. Incubate at room temperature for 2 minutes.
- 16. Place the tube back on the magnet and wait until the solution is clear.
- 17. Transfer **50 µL** of supernatant into fresh PCR tube.

SPRI Cleanup 2

- 1. Add **35 µL** of SPRIselect beads (0.7x) to the cleaned PCR product and pipette mix until the solution is homogeneous.
- 2. Incubate at room temperature for 5 minutes.
- 3. Briefly spin and place the tube on a magnetic stand for **2 minutes** or until the solution is clear.
- 4. Remove and discard the supernatant.
- 5. Add **200 \muL** of 80% ethanol to the side of the tube opposite the pellet.
- 6. Incubate for **30 seconds**.
- 7. Carefully remove and discard the supernatant without disturbing the beads.
- 8. Repeat the $200 \ \mu L$ 80% ethanol wash for a total of two washes.
- 9. Briefly spin the tube to collect the residual ethanol at the bottom of the tube and place it back on the magnetic stand.
- 10. Carefully remove residual 80% ethanol without disturbing the beads.
- 11. Air dry the beads for **1 minute** or until the bead pellet appears matte instead of glossy, but not cracked.
- 12. Remove the tube from the magnetic stand and add **42 µL** of Elution Buffer.
- 13. Pipette mix to resuspend the beads in solution.
- 14. Incubate at **room temperature** for **2 minutes**.
- 15. Place the tube back on the magnetic stand and wait until the solution is clear.
- 16. Carefully transfer **40 µL** of eluted library to a fresh PCR tube.
- 17. Proceed to Step 16: Final Library QC.

Step 14: ScalePlex Enrichment PCR

NOTE: Perform this step if ScalePlex Fixation was used.

Review the following table to prepare reagents before starting this step.

Source	Material	Cap Color	Take From	Thaw At	Brief Vortex	Brief Spin
Module 3	QS Index PCR MM	Pink	-20°C	On ice	\bigotimes	\checkmark
QuantumScale Library Index Kit	QS ScalePlex Index PCR Primer Tube	Blue	-20°C	On ice	\checkmark	\checkmark
Other Vendors	Nuclease-free water					

Procedure

- 1. Take the purified First PCR Amplification Product Step 11: Post-PCR SPRI Cleanup and QC and quantify.
- 2. Dilute an aliquot to 0.5 ng/ μ L in **40 \muL** with nuclease free water.
- 3. On ice, prepare the ScalePlex Enrichment PCR Reaction Mix by combining the components specified in Table 9.

Table 9: ScalePlex PCR Reaction Mix

Reagent	Volume (µL)
Purified First PCR Amplification product	40
Nuclease-free water	25
QS Index PCR MM	25
QS ScalePlex PCR Primer Tube	10
Total volume	100

4. Pipette mix and briefly spin down in a microcentrifuge.

5. Incubate the ScalePlex PCR reaction in a thermocycler according to Program 11.

Lid Temperature		Reactio	on Volume
1	05°C	10)0 μL
Step	Temperature	Time	Cycles
1	98°C	45 sec	1
2	98°C	15 sec	Stage 1
3	63°C	30 sec	5 cycles
4	72°C	30 sec	(steps 2-4)
5	98°C	15 sec	Stage 2
6	72°C	30 sec	 7 cycles (steps 5-6)
7	72°C	1 min	1
8	10°C	Hold	1

Program 11: ScalePlex Enrichment PCR

6. Once the PCR reaction is complete, proceed directly to Step 15: ScalePlex Library Cleanup.

Step 15: ScalePlex Library Cleanup

NOTE: Perform this step if ScalePlex Fixation was used.

Review the following table to prepare reagents before starting this step.

Source	Material	Cap Color	Take From	Thaw At	Brief Vortex	Brief Spin	
Module 1	Elution Buffer	Yellow	RT	RT	\checkmark	\checkmark	
	Nuclease-free water						
	SPRIselect beads						
	Ethanol (pure)						
Other Vandara	0.2-mL PCR tube strips (nuclease-free)						
Offer vendors	2.0-mL DNA LoBind tubes Magnetic stand (96-well compatible)						
	Qubit dsDNA HS Assay Kit						
	D5000 ScreenTape Kit (or equivalent)						

Before you Begin

• Prepare 500 µL of fresh 80% ethanol.

Procedure

- 1. Vortex the SPRIselect beads well until they appear homogeneous in color.
- 2. Add **100 µL** of SPRIselect beads (1.0X) to the ligation product and pipette mix until the solution is homogeneous.
- 3. Incubate at room temperature for 5 minutes.
- 4. Briefly spin and place the tube on a magnetic stand for **2 minutes** or until the solution is clear.
- 5. Carefully remove and discard the supernatant without disturbing the beads.
- 6. Add $200 \ \mu L$ of 80% ethanol to the side of the tube opposite the pellet.
- 7. Incubate for **30 seconds**.
- 8. Carefully remove and discard the supernatant without disturbing the beads.
- 9. Repeat the 200 µL 80% ethanol wash for a total of two washes.
- 10. Briefly spin the tube to collect the residual ethanol at the bottom of the tube and place it back on the magnetic stand.
- 11. Carefully remove residual 80% ethanol without disturbing the beads.
- 12. Air dry the beads for 1 minute or until the bead pellet appears matte instead of glossy but not cracked.
- 13. Remove the tube from the magnetic stand and add $53 \mu L$ of Elution Buffer.
- 14. Pipette mix to resuspend the beads in solution.

- 15. Incubate at **room temperature** for **2 minutes**.
- 16. Place the tube back on the magnet and wait until the solution is clear.
- 17. Transfer **50 \muL** of supernatant into fresh PCR tube.
- 18. Proceed to Step 17: ScalePlex Library QC.

Step 16: Final Library QC

- 1. Quantify the Final Library concentration with the Qubit[™] 1X dsDNA HS Assay Kit.
- 2. Determine the size of the Final Library product using an Agilent Tapestation or equivalent fragment analyzer. Example traces are shown in Figure 6 (Tapestation).

Figure 6: Representative Final Library Traces on Tapestation

Safe stopping point. Purified library can be stored at -20°C for up to 2 months.

Step 17: ScalePlex Library QC

NOTE: Perform this step if ScalePlex Fixation was used.

- 1. Quantify the Final Library concentration with the Qubit[™] 1X dsDNA HS Assay Kit.
- 2. Determine the size of the Final Library product using an Agilent Tapestation or equivalent fragment analyzer. Example traces are shown in Figure 7 (Tapestation).

Figure 7: Representative Final Library Traces on Tapestation

Safe stopping point. Purified library can be stored at -20°C for up to 2 months.

Step 18: Sequencing Parameters

RNA Library - ILMN

Sequence the library on an Illumina sequencer using the following parameters. Perform library dilution and clustering according to sequencing manufacturers parameters.

Read	Length	Purpose
Read 1	≤82 cycles	Transcript
Read 2	16 cycles	RT Barcode (24 different barcodes)
		MB (Molecular Barcode)
Index 1	32 cycles	Bead Barcode (~880k different barcodes)
Index 2	8 cycles	Index PCR Barcode (1 barcode)

Sequencing Depth

We recommend a minimum sequencing depth of **20,000 read pairs per cell/nucleus** for the RNA library and **2,000 read pairs per cell/nucleus** for the ScalePlex Library.

Recommended Final Loading Concentrations			
NovaSeq X (25B)	160 рМ		
NovaSeq X (10B)	160 рМ		
NextSeq 2000 (XLEAP-SBS)	600 pM (on-board denaturation)		
PhiX	1% (optional)		

CAUTION: To ensure correct sample demultiplexing, libraries processed by multiple ScaleBio Single Cell RNA Sequencing Kits cannot be pooled nor sequenced together on the same lane of a flow cell.

Note that the QuantumScale Single Cell RNA Kit - Medium must use the ScaleBio Seq Suite: RNA v2.0 for data analysis.

For implementation of the ScaleBio RNA Bioinformatics Pipeline (ScaleBio Seq Suite), contact your local Field Application Scientist or support@scale.bio.

Document Revision History

Document Revision	Revisions Date	Description of Change
1323029 Rev A	May 2025	Initial release